COASTAL APPLICATIONS USING SST AND OCEAN COLOR SUPPORT BY NAUSICAA IMAGE BROWSER

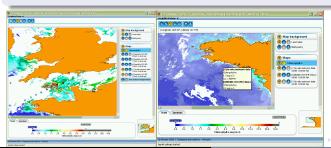
Jeff Piollé¹ Francis Gohin²

¹CERSAT/Laboratoire d'Océanographie Spatiale Ifremer-Centre de Brest

¹Département Dynamiques de l'Environnement Côtier Ifremer-Centre de Brest

Joint GlobCOLOUR 1st/Medspiration 4th user consultation meeting, Villefranche-Sur-Mer, 5th December 2006

OUTLINE

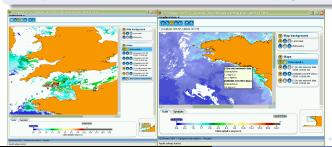

- NAUSICAA: A SUPPORT TO THE USE OF SST AND OCEAN COLOR DATA
 - Motivation
 - Requirements
- MAIN FEATURES OF NAUSICAA IMAGE BROWSER
 - Visualization
 - Access to data
 - Data featured
- Some coastal application at Ifremer
 - Hydrodynamical model validation
 - Physical and Biological processes
 - Other various application
- PERSPECTIVE
 - Improvements
 - New applications

OVERVIEW

• Nausicaa is an image-based data explorer (satellite, in situ and model outputs)

- Nausicaa is an image-based data explorer (satellite, in situ and model outputs)
- It focus on regional (predefined but configurable) areas

- Nausicaa is an image-based data explorer (satellite, in situ and model outputs)
- It focus on regional (predefined but configurable) areas
- Provides
 - daily snapshot of all available data
 - · several years of archive with browsing facilities


- Nausicaa is an image-based data explorer (satellite, in situ and model outputs)
- It focus on regional (predefined but configurable) areas
- Provides
 - daily snapshot of all available data
 - several years of archive with browsing facilities
- Makes easy :
 - study of past situations (processes, etc...)
 - operational applications (real-time)

- Nausicaa is an image-based data explorer (satellite, in situ and model outputs)
- It focus on regional (predefined but configurable) areas
- Provides
 - daily snapshot of all available data
 - several years of archive with browsing facilities
- Makes easy :
 - study of past situations (processes, etc...)
 - operational applications (real-time)
- Implemented in the frame of ROSES and Marcoast programs

AVAILABILITY OF SATELLITE DATA

Many high quality data are available at providers or aggregated by various projects (Medspiration, Globcolour) but:

AVAILABILITY OF SATELLITE DATA

Many high quality data are available at providers or aggregated by various projects (Medspiration, Globcolour) but:

Issues

distributed sources make it difficult to collect the data

AVAILABILITY OF SATELLITE DATA

Many high quality data are available at providers or aggregated by various projects (Medspiration, Globcolour) but:

ISSUES

- distributed sources make it difficult to collect the data
 - · misknowledge of users of what they can get, with which confidence or quality

AVAILABILITY OF SATELLITE DATA

Many high quality data are available at providers or aggregated by various projects (Medspiration, Globcolour) but:

ISSUES

- distributed sources make it difficult to collect the data
 - misknowledge of users of what they can get, with which confidence or quality
 - technical issues

AVAILABILITY OF SATELLITE DATA

Many high quality data are available at providers or aggregated by various projects (Medspiration, Globcolour) but:

ISSUES

- distributed sources make it difficult to collect the data
 - · misknowledge of users of what they can get, with which confidence or quality
 - technical issues
 - selecting small areas

AVAILABILITY OF SATELLITE DATA

Many high quality data are available at providers or aggregated by various projects (Medspiration, Globcolour) but:

- distributed sources make it difficult to collect the data
 - · misknowledge of users of what they can get, with which confidence or quality
 - technical issues
 - selecting small areas
- handling the data is not easy

AVAILABILITY OF SATELLITE DATA

Many high quality data are available at providers or aggregated by various projects (Medspiration, Globcolour) but:

- distributed sources make it difficult to collect the data
 - · misknowledge of users of what they can get, with which confidence or quality
 - technical issues
 - selecting small areas
- handling the data is not easy
 - poor hardware and software equipment (for instance in coastal stations). We do not address only big modelling centers!!

AVAILABILITY OF SATELLITE DATA

Many high quality data are available at providers or aggregated by various projects (Medspiration, Globcolour) but:

- distributed sources make it difficult to collect the data
 - misknowledge of users of what they can get, with which confidence or quality
 - technical issues
 - selecting small areas
- handling the data is not easy
 - poor hardware and software equipment (for instance in coastal stations). We do not address only big modelling centers!!
 - technical issues for storing, reading, displaying or intercomparing the data

AVAILABILITY OF SATELLITE DATA

Many high quality data are available at providers or aggregated by various projects (Medspiration, Globcolour) but:

- distributed sources make it difficult to collect the data
 - · misknowledge of users of what they can get, with which confidence or quality
 - technical issues
 - selecting small areas
- handling the data is not easy
 - poor hardware and software equipment (for instance in coastal stations). We do not address only big modelling centers!!
 - technical issues for storing, reading, displaying or intercomparing the data
- practices

AVAILABILITY OF SATELLITE DATA

Many high quality data are available at providers or aggregated by various projects (Medspiration, Globcolour) but:

- distributed sources make it difficult to collect the data
 - misknowledge of users of what they can get, with which confidence or quality
 - technical issues
 - selecting small areas
- handling the data is not easy
 - poor hardware and software equipment (for instance in coastal stations). We do not address only big modelling centers!!
 - technical issues for storing, reading, displaying or intercomparing the data
- practices
 - how to bring people used to in situ data to the use (and trust) of satellite data?

NEEDS

• bring the data to the users with no effort

How to achieve that?

 easy access (no explicit download, file handling, no tools to install nor open): web based application, fast and light data browsing implying pre-computed images

NEEDS

- bring the data to the users with no effort
- provide a higher level of integration

How to achieve that?

- easy access (no explicit download, file handling, no tools to install nor open): web based application, fast and light data browsing implying pre-computed images
- select and collect the data for users (or transparent link to remote sources): no a priori knowledge of where the data come from
- homogeneous access to all data sources: same grid/projection, same operations (for visualization, tools,...)

NEEDS

- bring the data to the users with no effort
- provide a higher level of integration
- provide easy cross-comparison means with what users already know or use, to enforce confidence in satellite data

HOW TO ACHIEVE THAT?

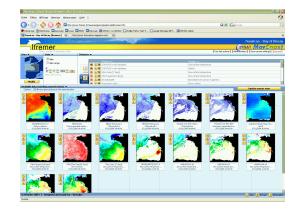
- easy access (no explicit download, file handling, no tools to install nor open): web based application, fast and light data browsing implying pre-computed images
- select and collect the data for users (or transparent link to remote sources): no a priori knowledge of where the data come from
- homogeneous access to all data sources: same grid/projection, same operations (for visualization, tools,...)
- interactive functionalities to display several data at the same time, check values
- display in situ validation data

NEEDS

- bring the data to the users with no effort
- provide a higher level of integration
- provide easy cross-comparison means with what users already know or use, to enforce confidence in satellite data
- provide expertise

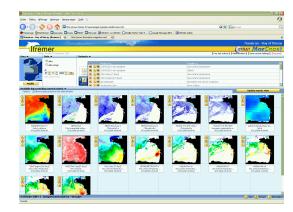
How to achieve that?

- easy access (no explicit download, file handling, no tools to install nor open): web based application, fast and light data browsing implying pre-computed images
- select and collect the data for users (or transparent link to remote sources): no a priori knowledge of where the data come from
- homogeneous access to all data sources: same grid/projection, same operations (for visualization, tools,...)
- interactive functionalities to display several data at the same time, check values
- display in situ validation data
- user support, documentation, examples, typical situation


OUTLINE

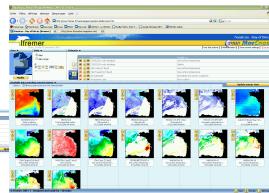
- Nausicaa : a support to the use of SST and Ocean color data
 - Motivation
 - Requirements
- Main features of Nausicaa image browser
 - Visualization
 - Access to data
 - Data featured
- Some coastal application at Ifremer
 - Hydrodynamical model validation
 - Physical and Biological processes
 - Other various application
- PERSPECTIVE
 - Improvements
 - New applications

Data browsing



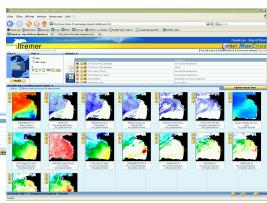
Data browsing

- date selection
- daily snapshot or time series



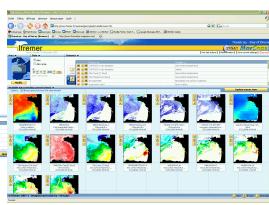
- Data browsing
 - date selection
 - daily snapshot or time series

display what you want

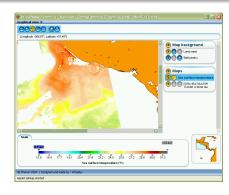

- Data browsing
 - date selection
 - daily snapshot or time series

display what you want

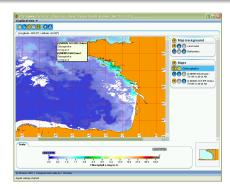
- possible actions on imagettes
 - getting information
 - data export (extraction) shortcut
 - full resolution visualization 🔟

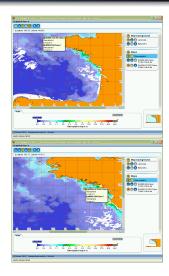

- Data browsing
 - date selection
 - daily snapshot or time series

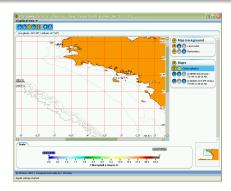
display what you want

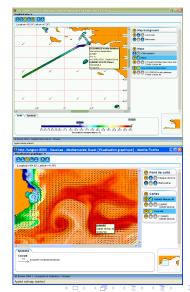


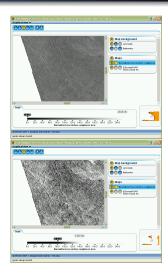
- possible actions on imagettes
 - getting information
 - data export (extraction) shortcut
 - full resolution visualization 🔟
- Information warning and display about an interesting phenomena or event


• full resolution image display

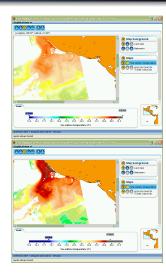

- full resolution image display
 - location and geophysical values over mouse

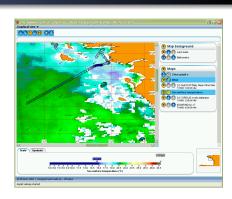

- full resolution image display
 - location and geophysical values over mouse
 - zoom in/zoom out


- full resolution image display
 - location and geophysical values over mouse
 - zoom in/zoom out
 - static layers
 - land mask
 - grid
 - bathymetry



- full resolution image display
 - location and geophysical values over mouse
 - zoom in/zoom out
 - static layers
 - land mask
 - grid
 - bathymetry
- vectorial data display
 - marks for in situ (point) data (with associated URLs for interoperability with other display applications)
 - vectors (wind, currents)


- full resolution image display
 - location and geophysical values over mouse
 - zoom in/zoom out
 - static layers
 - land mask
 - grid
 - bathymetry
- vectorial data display
 - marks for in situ (point) data (with associated URLs for interoperability with other display applications)
 - vectors (wind, currents)
- Color palettes
 - linear, log, ...
 - palette contrast adjustment



- full resolution image display
 - location and geophysical values over mouse
 - zoom in/zoom out
 - static layers
 - land mask
 - gridbathymetry
- vectorial data display
 - marks for in situ (point) data (with associated URLs for interoperability with other display applications)
 - vectors (wind, currents)
- Color palettes
 - · linear, log, ...
 - palette contrast adjustment

- full resolution image display
 - location and geophysical values over mouse
 - zoom in/zoom out
 - static lavers
 - land mask
 - grid
 - bathymetry
- vectorial data display
 - marks for in situ (point) data (with associated URLs for interoperability with other display applications)
 - vectors (wind, currents)
- Color palettes
 - linear, log, ...
 - palette contrast adjustment
- multiple layer management
 - only one geophysical parameter displayed at once, but multiple images can be overlayed
 - possible ordering of the layers
 - vectorial layers can overlay image layers

USER CUSTOMIZATION

User registration

- tracking of system use and users
- · restricted access on some datasets
- user profile

User profile

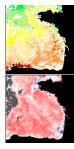
- custom settings
- variable selection in mosac
- zoom area for full resolution visualization
- display options, session opening (on current day or last saved day)

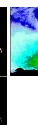
Data export

- Extraction of numerical values
 - link to netCDF/HDF data files
 - extraction of a time series possible
- Extraction of images
 - multiple image formats ("'naked"' image)
 - animation (time series) possible

Coming...

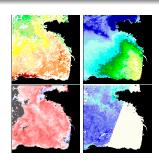
- Export to GIS format SIG (GeoTiff/ShapeFile)
- Pretty image extraction (including date, palette, contrast adjustment settings, legend)
- export to GoogleMap or Ifremer/GIS

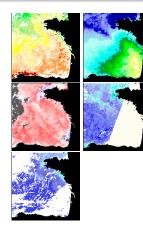

AVAILABLE DATA

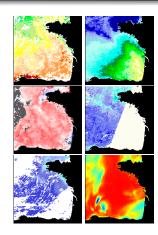

SATELLITE		

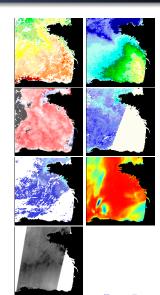
SATELLITE

 Medspiration SST (AVHRR SAF O&SI and SEVIRI, AATSR, L4 products, climatologies [Casey and Faugre] and anomalies)

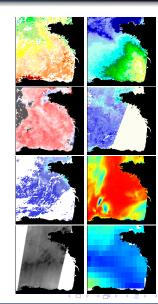



- Medspiration SST (AVHRR SAF O&SI and SEVIRI, AATSR, L4 products, climatologies [Casey and Faugre] and anomalies)
- ESA Meris Case I/Case II Chlorophyll and Suspended matters


- Medspiration SST (AVHRR SAF O&SI and SEVIRI, AATSR, L4 products, climatologies [Casey and Faugre] and anomalies)
- ESA Meris Case I/Case II Chlorophyll and Suspended matters
- MODIS and SeaWifs (soon MERIS) Chlorophyll and Suspended matters

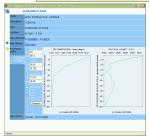


- Medspiration SST (AVHRR SAF O&SI and SEVIRI, AATSR, L4 products, climatologies [Casey and Faugre] and anomalies)
- ESA Meris Case I/Case II Chlorophyll and Suspended matters
- MODIS and SeaWifs (soon MERIS) Chlorophyll and Suspended matters
- METEOSAT solar irradiance



- Medspiration SST (AVHRR SAF O&SI and SEVIRI, AATSR, L4 products, climatologies [Casey and Faugre] and anomalies)
- ESA Meris Case I/Case II Chlorophyll and Suspended matters
- MODIS and SeaWifs (soon MERIS) Chlorophyll and Suspended matters
- METEOSAT solar irradiance
- ENVISAT ASAR (restricted)

- Medspiration SST (AVHRR SAF O&SI and SEVIRI, AATSR, L4 products, climatologies [Casey and Faugre] and anomalies)
- ESA Meris Case I/Case II Chlorophyll and Suspended matters
- MODIS and SeaWifs (soon MERIS) Chlorophyll and Suspended matters
- METEOSAT solar irradiance
- ENVISAT ASAR (restricted)
- QuikSCAT winds



In situ

• Coriolis SST and salinity data (same as used for MDB)



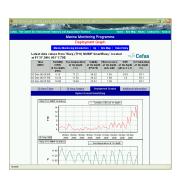
Piollé et al.

In situ

- Coriolis SST and salinity data (same as used for MDB)
- Ifremer networks (campaign and coastal stations) for chlorophyll, SPM, turbidity

In situ

- Coriolis SST and salinity data (same as used for MDB)
- Ifremer networks (campaign and coastal stations) for chlorophyll, SPM, turbidity
- River outflows from various agencies

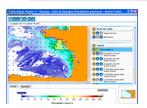


In situ

- Coriolis SST and salinity data (same as used for MDB)
- Ifremer networks (campaign and coastal stations) for chlorophyll, SPM, turbidity
- River outflows from various agencies
- CEFAS (Centre for Environment Fisheries and Aquaculture Science) smartbuoy turbidity
- Planned : maregraphs, other sources

COVERED AREAS

General access page, tutorial, examples: http://cersat.ifremer.fr/data/view/nausicaa



COVERED AREAS

General access page, tutorial, examples :

http://cersat.ifremer.fr/data/view/nausicaa

Bay of Biscay, http://www.ifremer.fr/nausicaa/gascogne/index.htm



COVERED AREAS

General access page, tutorial, examples :

http://cersat.ifremer.fr/data/view/nausicaa

- Bay of Biscay, http://www.ifremer.fr/nausicaa/gascogne/index.htm
- Channel/North Sea, http://www.ifremer.fr/nausicaa/roses/index.htm

COVERED AREAS

General access page, tutorial, examples:

http://cersat.ifremer.fr/data/view/nausicaa

- Bay of Biscay, http://www.ifremer.fr/nausicaa/gascogne/index.htm
- Channel/North Sea, http://www.ifremer.fr/nausicaa/roses/index.htm
- Gulf of Lion Corsica, http://www.ifremer.fr/nausicaa/medit/index.htm

COVERED AREAS

General access page, tutorial, examples: http://cersat.ifremer.fr/data/view/nausicaa

- Bay of Biscay, http://www.ifremer.fr/nausicaa/gascogne/index.htm
- Channel/North Sea, http://www.ifremer.fr/nausicaa/roses/index.htm
- Gulf of Lion Corsica, http://www.ifremer.fr/nausicaa/medit/index.htm
- Marcoast area (North-West Europe), http://www.ifremer.fr/nausicaa/marcoast/index.htm

Nausicaa audience

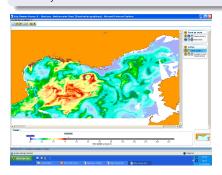
USAGE

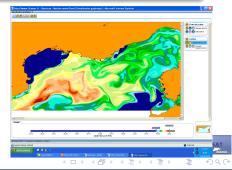
- access opened since April 2006
- more than 240 users registered (including Ifremer users)
- 1/3 of non-ifremer users connected at least once in last month
- most accessed server (non-Ifremer users) is Biscay
- operational use in coastal stations

OUTLINE

- NAUSICAA: A SUPPORT TO THE USE OF SST AND OCEAN COLOR DATA
 - Motivation
 - Requirements
- 2 Main features of Nausicaa image browser
 - Visualization
 - Access to data
 - Data featured
- Some coastal application at Ifremer
 - Hydrodynamical model validation
 - Physical and Biological processes
 - Other various application
- PERSPECTIVE
 - Improvements
 - New applications

Hydrodynamical model validation Physical and Biological processes Other various application

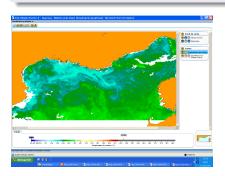

VALIDATION OF AN HYDRODYNAMICAL MODEL OF THE MEDITERRANEAN SEA

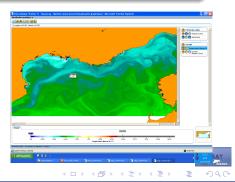

PIERRE GARREAU, IFREMER, DÉPARTEMENT DYNAMIQUES DE L'ENVIRONNEMENT CÔTIER

Intercomparison with satellite surface data (I)

Example of a daily use for model outputs control and validation

- Sea surface salinity from MARS3D model (ifremer)
- Chlorophyll from MODIS
- May 2006

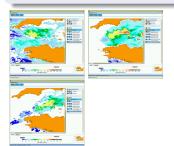

Hydrodynamical model validation Physical and Biological processes Other various application


VALIDATION OF AN HYDRODYNAMICAL MODEL OF THE MEDITERRANEAN SEA

PIERRE GARREAU, IFREMER, DÉPARTEMENT DYNAMIQUES DE L'ENVIRONNEMENT CÔTIER

Intercomparison with satellite surface data (II)

- Sea surface temperature from MARS3D model (ifremer)
- Sea surface temperature from Medspiration NAR/AVHRR data
- April 2006

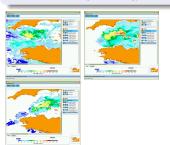

Hydrodynamical model validation Physical and Biological processes

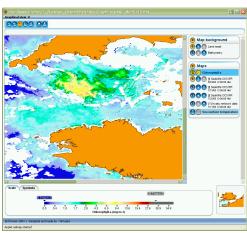
The environmental conditions during a strong Karenia mikimotoi bloom during the 2003 summer

ALICE VANHOUTTE AND AL., DÉPARTEMENT DYNAMIQUES DE L'ENVIRONNEMENT CÔTIER

BLOOM OBSERVATION FROM OCEAN COLOR

From June to August 2003, the bloom of Karenia mikimotoi is observed eastwards as the summer stratification takes place (SeaWifs-derived Chlorophyll-a, [IFREMER])



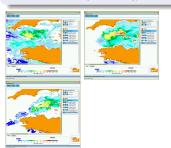

The environmental conditions during a strong Karenia MIKIMOTOI BLOOM DURING THE 2003 SUMMER

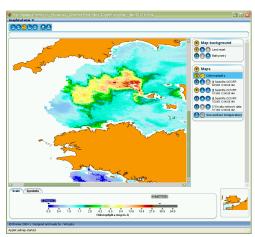
ALICE VANHOUTTE AND AL., DÉPARTEMENT DYNAMIQUES DE L'ENVIRONNEMENT CÔTIER

BLOOM OBSERVATION FROM OCEAN COLOR

From June to August 2003, the bloom of Karenia mikimotoi is observed eastwards as the summer stratification takes place (SeaWifs-derived Chlorophyll-a, [IFREMER])

23TH JUNE 2003


Hydrodynamical model validation Physical and Biological processes

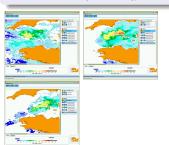

The environmental conditions during a strong Karenia mikimotoi bloom during the 2003 summer

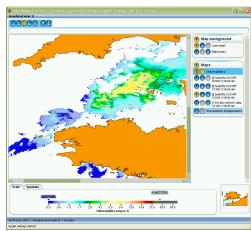
ALICE VANHOUTTE AND AL., DÉPARTEMENT DYNAMIQUES DE L'ENVIRONNEMENT CÔTIER

BLOOM OBSERVATION FROM OCEAN COLOR

From June to August 2003, the bloom of Karenia mikimotoi is observed eastwards as the summer stratification takes place (SeaWifs-derived Chlorophyll-a, [IFREMER])

13 July 2003

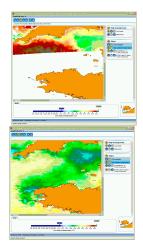



The environmental conditions during a strong Karenia mikimotoi bloom during the 2003 summer

ALICE VANHOUTTE AND AL., DÉPARTEMENT DYNAMIQUES DE L'ENVIRONNEMENT CÔTIER

BLOOM OBSERVATION FROM OCEAN COLOR

From June to August 2003, the bloom of Karenia mikimotoi is observed eastwards as the summer stratification takes place (SeaWifs-derived Chlorophyll-a, [IFREMER])

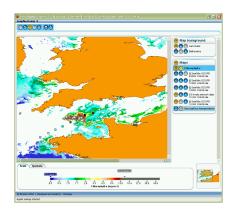

The environmental conditions during a strong Karenia mikimotoi bloom during the 2003 summer

ALICE VANHOUTTE AND AL., DÉPARTEMENT DYNAMIQUES DE L'ENVIRONNEMENT CÔTIER

BLOOM CONDITION FROM SST

Thanks to the climatology the anomaly in the surface temperature, meaning higher stratification and optimal condition for the HAB, is well observed from the avhrr data [CASEY CLIMATOLOGY, SAF O&SI NAR16]

Hydrodynamical model validation Physical and Biological processes

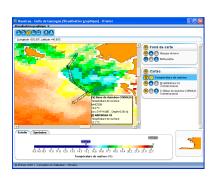

The environmental conditions during a strong Karenia mikimotoi bloom during the 2003 summer

ALICE VANHOUTTE AND AL., DÉPARTEMENT DYNAMIQUES DE L'ENVIRONNEMENT CÔTIER

Intercomparing in situ and satellite data

More and more in situ data are added to the Nausicaa servers

here data of the ferry
 Porthmouth-Bilbao [COURTESY OF DAVID HYDES AND MOHAMMED QURBAN, NOCS]

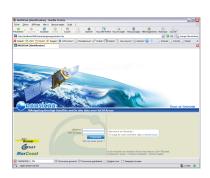

SATELLITE MAPS DISSEMINATION TO OCEANOGRAPHIC SHIPS

Using satellite data in cruise - 1

- Intercomparing Thalassa SST sampling (Mixed layer Temperature) and NAR18 SST (night skin temperature) [17th July 2006]
- SST skin is higher by 0.3/1.2 degrees (exceptional case where surface gradient occurs)

Using satellite data in cruise - 2

 ocean color / sst maps used for eddies tracking in Gulf of Biscay (Physical Oceanography)


OUTLINE

- NAUSICAA: A SUPPORT TO THE USE OF SST AND OCEAN COLOR DATA
 - Motivation
 - Requirements
- MAIN FEATURES OF NAUSICAA IMAGE BROWSER
 - Visualization
 - Access to data
 - Data featured
- Some coastal application at Ifremer
 - Hydrodynamical model validation
 - Physical and Biological processes
 - Other various application
- PERSPECTIVE
 - Improvements
 - New applications

optimization (for managing high resolution data: SAR, SRR, SST,...)

- optimization (for managing high resolution data : SAR, SRR, SST,...)
- more user friendly and sexy mosac view

- optimization (for managing high resolution data: SAR, SRR, SST,...)
- more user friendly and sexy mosac view
- New display features
 - transects, time series (at one point)
 - more static layers : rivers, water bodies

- optimization (for managing high resolution data: SAR, SRR, SST,...)
- more user friendly and sexy mosac view
- New display features
 - transects, time series (at one point)
 - · more static layers : rivers, water bodies
- prettier export to images and animations

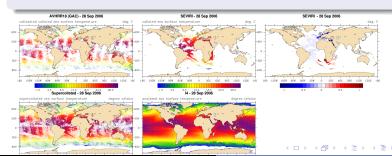


- optimization (for managing high resolution data: SAR, SRR, SST,...)
- more user friendly and sexy mosac view
- New display features
 - transects, time series (at one point)
 - · more static layers : rivers, water bodies
- prettier export to images and animations
- export to GIS formats

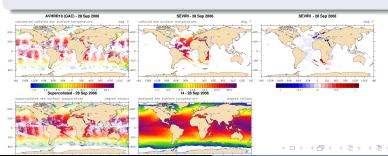
- optimization (for managing high resolution data: SAR, SRR, SST,...)
- 2 more user friendly and sexy mosac view
- New display features
 - · transects, time series (at one point)
 - · more static layers : rivers, water bodies
- prettier export to images and animations
- export to GIS formats

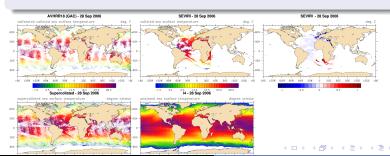
But...

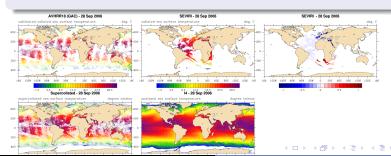
- keep it light, keep it fast
- web application, not GIS standalone client!

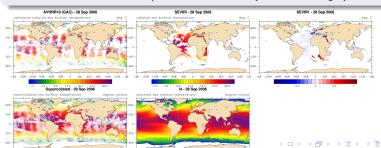

Validation of Mersea SST Analysis

 Using the Nausicaa abilities to investigate the analysis artefacts (sampling, sensor bias, contamination,...) by intercomparison of the various intermediate products and available ancillary data:

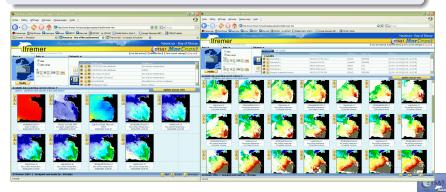



- Using the Nausicaa abilities to investigate the analysis artefacts (sampling, sensor bias, contamination,...) by intercomparison of the various intermediate products and available ancillary data:
 - collated single-sensor data, collated differences from sensors to AATSR, corrected single sensor collated data, merged supercollated data, OI analysis


- Using the Nausicaa abilities to investigate the analysis artefacts (sampling, sensor bias, contamination,...) by intercomparison of the various intermediate products and available ancillary data:
 - collated single-sensor data, collated differences from sensors to AATSR, corrected single sensor collated data, merged supercollated data, OI analysis
 - aerosols, wind fields, in situ data,...


- Using the Nausicaa abilities to investigate the analysis artefacts (sampling, sensor bias, contamination,...) by intercomparison of the various intermediate products and available ancillary data:
 - collated single-sensor data, collated differences from sensors to AATSR, corrected single sensor collated data, merged supercollated data, OI analysis
 - aerosols, wind fields, in situ data,...
- focusing on supersites (typical cases)

- Using the Nausicaa abilities to investigate the analysis artefacts (sampling, sensor bias, contamination,...) by intercomparison of the various intermediate products and available ancillary data:
 - collated single-sensor data, collated differences from sensors to AATSR, corrected single sensor collated data, merged supercollated data, OI analysis
 - · aerosols, wind fields, in situ data,...
- focusing on supersites (typical cases)
- including other available analysis (OSTIA, Reynolds)



- Using the Nausicaa abilities to investigate the analysis artefacts (sampling, sensor bias, contamination,...) by intercomparison of the various intermediate products and available ancillary data:
 - collated single-sensor data, collated differences from sensors to AATSR, corrected single sensor collated data, merged supercollated data, OI analysis
 - · aerosols, wind fields, in situ data,...
- focusing on supersites (typical cases)
- including other available analysis (OSTIA, Reynolds)
- can be a combined effort (Nausicaa can remotely access to images)

Diurnal cycle study

- displaying all involved parameters "'in a glance"'
- adding in situ data, (DW or weather) model outputs
- new time series graphs feature will bring a significant improvement

NEW REGIONAL AREAS

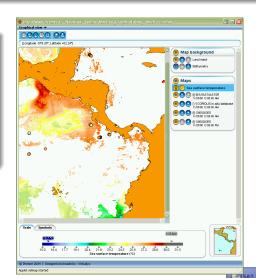
• Cooperation with Argentina : Rio De La Plata

NEW REGIONAL AREAS

- Cooperation with Argentina : Rio De La Plata
- Cooperation with Miami : Virgin Islands

NEW REGIONAL AREAS

- Cooperation with Argentina : Rio De La Plata
- Cooperation with Miami: Virgin Islands
- High latitude server (for sea-ice)


NEW REGIONAL AREAS

- Cooperation with Argentina : Rio De La Plata
- Cooperation with Miami: Virgin Islands
- High latitude server (for sea-ice)
- Supersites for SMOS cal/val

NEW REGIONAL AREAS

- Cooperation with Argentina : Rio De La Plata
- Cooperation with Miami: Virgin Islands
- High latitude server (for sea-ice)
- Supersites for SMOS cal/val
- Others? Ex: Central America/Galapagos

http://www.ifremer.fr/nausicaa/central-ameri

Summary

- Highly configurable tool: can include any datasets (converted to images or vectorial data) over any area
- 2 It is not only about the tool but also about the selection of served data
- ...and data alone, whatever quality, need attractive and easy tools for accessing wider user communities

Summary

- Highly configurable tool: can include any datasets (converted to images or vectorial data) over any area
- It is not only about the tool but also about the selection of served data
- ...and data alone, whatever quality, need attractive and easy tools for accessing wider user communities

ACCESS

General access page, tutorial, examples :

http://cersat.ifremer.fr/data/view/nausicaa

- Bay of Biscay, http://www.ifremer.fr/nausicaa/gascogne/index.htm
- Channel/North Sea, http://www.ifremer.fr/nausicaa/roses/index.htm
- Gulf of Lion Corsica, http://www.ifremer.fr/nausicaa/medit/index.htm
- Marcoast area (North-West Europe), http://www.ifremer.fr/nausicaa/marcoast/index.htm

