Mediterranean use of Medspiration: the CNR regional Optimally Interpolated SST products from MERSEA to MyOcean

R.Santoleri¹, B.Buongiorno Nardelli¹, C.Tronconi¹, S.Marullo²

¹CNR – ISAC - Gruppo Oceanografia da Satellite-Roma, Italy
²ENEA – Progetto Speciale Clima Globale-Roma, Italy
Outline

- Mediterranean SST processing chain & products
- Use of SST in the MFS Mediterranean ocean forecasting system
- UHR SST processing chain & Italian Seas products
- Future Plans
CNR SST-related activities within national and international projects/programmes

NRT products
- Mediterranean Forecasting System → EU
- Adricosm → Italian Government
- Medspiration → ESA
- Mersea → EU
- PRIMI → ASI → Develop an UHR (up to 1 km) product over the Italian Seas

MyOcean

Re-analyses
- Mediterranean Forecasting System → Med L4 re-analysis (1985-2007)
- SESAME → EU → compute a L4 re-analysis over the Black Sea
CNR OI_HR SST operational system:

Input data: Medspiration L2P

1/16° grid
all infrared sensors (no microwaves)
only night-time data
operational production since july 2007
CNR OI_HR SST operational system:
L2P data extraction and decloud procedures

Cloud detection at GOS is performed at various steps:

→ On original images, before the merging is performed:
 Applying selection criteria on L2P rejection flag, proximity confidence (etc.)…

→ Before selecting SST data in the optimal interpolation algorithm:
 - comparison to the nearest analysis available (if interpolation error is lower than a fixed value)
 - valid SST area’s margin erosion
CNR OI_HR SST operational system: L2P merging

In theory OI should only weight the data basing on observational error and covariance → huge amount of data

First data sub-sampling
Our scheme builds a single image per day selecting the ‘best’ measure available for each pixel → bias between sensors/passes must be corrected

CNR OI_HR merging strategy:
1. Define a Reference sensor list which will not be corrected
e.g. AATSR MODIS-Terra AVHRR (NOAA 17)
1. A composite map is built.
2. The merging procedure selects valid pixels using a configurable sensor sequence (hierarchy based on validation statistics)
3. Before adding data to the merged map, the bias between each new image and the pixels that have already been merged is estimated and removed
Optimal interpolation in synthesis

- Gives an estimate of an anomaly field with respect to a first guess, assuming statistical characteristics of the variability are known (background error covariance and observation error covariance).
- SST analysis is obtained as a linear combination of the observations, weighted directly with their correlation to the interpolation point and inversely with their cross-correlation.

\[x_a = x_b + B(R+B)^{-1}(y_o - x_b) \]

- The data used to interpolate at a certain time-space location are selected within a limited sub-domain, close to the interpolation point.
- The scheme drives a ‘multi-basin’ analysis to avoid information propagation across land, from one sub-basin to the other.
Optimally Interpolated SST

MEDITERRANEAN FORECASTING SYSTEM
Optimally interpolated Sea Surface Temperature map
DAY 01 MONTH 11 YEAR 2008

OISST products
- GOS-L4HR/nd-MED_NRT: OISST Near-Real-Time product
- GOS-L4HR/nd-MED_DT: OISST Delayed-Time product
- GOS-L4HR/nd-MED_NRT_ANOM: OISST Near-Real-Time Anomaly relative to the 1985-2004 mean
- DIRECT ACCESS TO DATA (THREDDS)
MFS regional sub-regional and shelf systems

MFS supports sub-regional (3 km) and shelf models (1 km) nesting: weekly forecasts are produced for ALL the sub-regional models and some shelf models.
Basin scale forecasting system:

NUMERICAL MODEL:
- Horizontal resolution 1/16° x 1/16°
- Vertical resolution 72 unevenly spaced levels
- Numerical code: OPA 8.2
- Close boundaries in the Atlantic ocean
- Free surface parameterization
- Asynchronous coupling with ECWF analyses or forecasts atmospheric fields

DATA ASSIMILATION SCHEME:
- SOFA: reduced order Optimal Interpolation scheme
- Intermittent (24hr) assimilation of:
 - Satellite SLA
 - Vertical profiles (T & S)
 - Satellite SST

\[
X^a = X^b + K(Y^o - H(X^b))
\]

\[
K = BH^T (HBH^T + R)^{-1}
\]

\[
X = \begin{bmatrix} T & S & \eta & U & V \end{bmatrix}^T
\]

\[
Q_{corr} = Q - \left. \frac{\partial Q}{\partial T} \right|_{T=T^*} (T - T^*)
\]
Forecast production and broadcast:

- Every day a 10 days forecast is produced in Real Time (11hr delay)
- Once a week, 15 past days analyses are produced with the assimilation of all available data (SST contribution)
- Every day a Web Bulletin is published (SST contribution)
- Every month an electronic monthly bulletin is released on the web site describing the results of the MFS system for the previous month together with anomalies and climatic indices (SST contribution)
- Every day the model data (& GOS SST data) are available through a dedicated ftp to users

www.bo.ingv.it/mfs
Mediterranean ocean Forecasting System

Satellite Sea Surface Temperature computed daily

Sea Surface Temperature, °C

Ongoing Projects
ADRICOSM
BOSS4GMEES
ECDOP
MERSEA IP

GNOO WEB SITE
NOON WEB SITE
Short Term Forecast of the Mediterranean Marine Ecosystem

10 day Forecast starts every Tuesday
Summary of SST Dissemination to Mediterranean Users

- Primary user of SST is the MFS at INGV
- National forecasting Systems and MOON operational system throughout MOON MoU (31 centres)
- Environmental Agencies of the Mediterranean region
- Italian Meteorological service for use the SST
- Research and educational users (> 200)
 - Research studies, cruises planning, etc
- Few Commercial Users
UHR Med L4 product: framework

In the framework of National Projects (Adricosm & PRIMI):

– new multi-sensors UHR SST products will be developed for the Italian Sea (Adriatic, Sicily Channel, Tyrrhenian Sea at 1 Km resolution)
– the new SST products will be assimilation in the Adriatic, Sicily Channel forecasting models
– The SST assimilation scheme will modified to take into account that the characteristics satellite SST (e.g. restoring coefficient depending on wind intensity & regime, e.g. Artale et al. JGR 2002)
UHR MED L4: Optimal interpolation strategy

• Different processes at different scales contribute to the variability of the SST

• Consequently, OI does not only interpolate, but also acts as a low-pass filter for the scales smaller than those dominating the background error covariance

RESOLUTION by itself is NOT a ‘SCALE SELECTION’ tool, COVARIANCE functions shape our ‘optimal filters’.

On the other hand…

• Resolution should be linked to covariance scales to avoid ‘monster’ matrix inversions and huge computational time
 ➔ multi-scale approach to UHR OI

• Generally some sub-sampling strategy can be applied to keep a ‘reasonable’ amount of data within an ‘influential’ space/time radius
CNR OI_HR SST operational system: statistical assumptions

1/16° product:

- The first guess is a daily (pentad) climatology built from 20 years of Pathfinder V5 data.

- Correlation function was estimated directly from observations in the framework of Medspiration:

\[C(r, \Delta t) = e^{-\frac{\Delta t}{\tau}} e^{-\frac{r}{L}} \]

where

L = 180 km

\(\tau \) = 7 days

- Small scale variability strongly filtered!
CNR OI_UHR SST scheme: statistical assumptions

- **The first guess** is the HR SST field → scale separation

- Covariance function and decorrelation time/space scales are defined **a priori**:

 \[
 C(r, \Delta t) = e^{\frac{-\Delta t}{\tau}} e^{\frac{-r}{L}}
 \]

- Different configurations will be tested

- Initial configuration L=5 km, τ=2 days
CNR OI_UHR SST scheme: overview and future implementation architecture

System developed during ASI project PRIMI (National project for oil-spill dispersion monitoring & forecasting)

Pre-operational production since September 2008 only over the Italian seas

Needs upgrade & tuning and validation
CNR OI_UHR SST scheme:
selected test areas

Operational model grid AREG 3km

Sub-regional model at 3 km

GHRSSST UHR grid 1 km
CNR OI_UHR SST scheme:
L2P data extraction

- Same procedure as for LowRes
- Only applied to High resolution sensors
CNR OI_UHR SST scheme: L2P data merging

- Bias adjustment procedure modified

 - OI_HR uses AATSR and/or MODIS-T and/or AVHRR17 as reference
 - OI_UHR uses the first guess to remove all biases
CNR OI_UHR SST scheme: computing strategy

- Small decorrelation scales allow multiple runs on small sub-basin grids and subsequent ‘collage’…
- several *interpolation grids* and *input data search grids* are defined so that same data are used at the borders of each grid (a sort of buffer area)
CNR OI_HR SST operational system:
L2P merging: problems identified and new algorithm

Before adding new data to the merged map, a **LOCAL bias (100 km)** between each new image and the pixels that have already been merged is estimated and removed.
CNR OI_UHR SST operational system:
L2P merging: problems identified and new algorithm

- The bias between each image and the first guess field is estimated locally (50 km)
- Data sparseness and quality estimated through SST gradient map (e.g. MODIS striping…). Data that display lower gradients are kept.
The Satellite Observing System of the Mediterranean Sea provides NRT, DT, and re-analysis satellite products in agreement with the requirements of the MCS core products

- This system will be the MOON component of the SST-TAC of MCS in the framework of MyOcean
- The CNR processing SST chains will be modified to provide also Black Sea products in accordance with the MyOcean requirements
- New algorithms will be developed and implemented in the operational chain immediately after test and validation